問答題
用Newton法求下列方程的根,計(jì)算準(zhǔn)確到4位有效數(shù)字.
您可能感興趣的試卷
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
定義內(nèi)積(f,g)=,試在H1=中尋求對(duì)于f(x)=x的最佳平方逼近多項(xiàng)式p(x)。
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
推導(dǎo)出以這3個(gè)點(diǎn)作為求積節(jié)點(diǎn)在[0,1]上的插值型求積公式。
題型:?jiǎn)柎痤}
求方程的剛性比,用四階R-K方法求解時(shí),最大步長(zhǎng)能取多少?
題型:?jiǎn)柎痤}
用歐拉法求解,步長(zhǎng)h取什么范圍的值,才能使計(jì)算穩(wěn)定.
題型:?jiǎn)柎痤}
f(x)=x7+x4+3x+1,求。
題型:?jiǎn)柎痤}
用歐拉法解初值問題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
題型:?jiǎn)柎痤}
已知由數(shù)據(jù)(0,0),(0.5,y),(1,3)和(2,2)構(gòu)造出的三次插值多項(xiàng)式P3(x)的x3的系數(shù)是6,試確定數(shù)據(jù)y。
題型:?jiǎn)柎痤}
設(shè)f(x)∈C2[a,b]且f(a)=f(b)=0,求證:。
題型:?jiǎn)柎痤}
求函數(shù)f(x)=lnx在指定區(qū)間[1,2]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}