問答題已知矩陣A=,如果A的特征值λ1對(duì)應(yīng)的一個(gè)特征向量a1=(1,-2,3)T,求a,b和λ1的值。
您可能感興趣的試卷
你可能感興趣的試題
1.單項(xiàng)選擇題
A為三階矩陣,λ1,λ2,λ3為其特征值,=0的充分條件是()。
A.∣λ1∣=1,∣λ2∣〈1,∣λ3∣〈1
B.∣λ1∣〈1,∣λ2∣=∣λ3∣=1
C.∣λ1∣〈1,∣λ2∣〈1,∣λ3∣〈1
D.∣λ1∣=∣λ2∣=∣λ3∣=1
2.單項(xiàng)選擇題設(shè)λ1,λ2為n階矩陣A的特征值,其對(duì)應(yīng)的特征向量分別為x1,x2,則()成立.
A.λ1=λ2時(shí),x1,x2一定成比例
B.λ1≠λ2時(shí),λ3=λ1+λ2也是A的特征值,且對(duì)應(yīng)的特征向量為x1+x2
C.λ1≠λ2時(shí),x1+x2不可能是A的特征向量
D.λ1=0時(shí),有x1=0