A.AC
B.ABC
C.AB-BC
D.AC+BC
您可能感興趣的試卷
你可能感興趣的試題
A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實數(shù)λ,使得a=λb
D.若存在實數(shù)λ,使得a=λb,則|a+b|=|a|-|b|
在直角三角形ABC中,點D是斜邊AB的中點,點P為線段CD的中點,則()。
A.2
B.4
C.5
D.10
A.28
B.76
C.123
D.199
若,則sin2θ=()。
A.
B.
C.
D.
A.存在四邊相等的四邊形不是正方形
B.z1,z10∈C,為實數(shù)的充分必要條件是z1、z2互為共軛復數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N,Cn0+Cn1,…+Cnn:都是偶數(shù)
最新試題
一商家銷售某種商品的價格滿足關系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?
已知向量a,b,滿足a=b=1,且,其中k>0。(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;(2)當a·b取得最大值時,求實數(shù)λ,使a+λb的值最小,并對這一結論作出幾何解釋。
案例:下面是一位老師在講"簡單幾何體的三視圖"的教學片斷,請閱讀后回答問題:創(chuàng)設問題情境,從學生熟悉的古詩入手,引出課題。多媒體顯示:題西林壁--蘇軾橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。師:大家看大屏幕,一起朗讀這首詩。師:哪位同學能說說蘇東坡是怎樣觀察廬山的嗎?都有什么感覺?生:橫看,側看,遠看,近看,高看,低看。都得到不同的效果。師:回答得非常好。可能有些同學會納悶,今天老師上數(shù)學課怎么會念起古詩來?其實,這首詩隱含著一些數(shù)學知識。它教會了我們怎樣觀察物體,這也是我們這節(jié)課將要學習的內容--簡單組合體的三視圖(寫板書)。問題:(1)該教師的課堂引入有什么特色,對教學有什么好處?(2)簡單談談數(shù)學教學過程中怎樣調動學生的學習熱情激發(fā)學習興趣。
高中"等差數(shù)列"設定的教學目標如下:①通過實例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關系并能用有關知識解決相應的問題,體會等差數(shù)列與一次函數(shù)的關系:③讓學生對日常生活中的實際問題進行分析,引導學生通過觀察,推導,歸納抽象出等差數(shù)列的概念:由學生建立等差數(shù)列模型用相關知識解決一些簡單的問題,進行等差數(shù)列通項公式應用的實踐操作并在操作過程中,通過類比函數(shù)概念、性質、表達式得到對等差數(shù)列相應問題的研究。完成下列任務:(1)根據教學目標①,給出至少三個實例,并說明設計意圖;(2)根據教學目標②,設計至少兩個問題,讓學生用等差數(shù)列求解,并說明設計意圖;(3)確定本節(jié)課的教學重點;(4)作為高中階段的重點內容,其難點是什么?(5)本節(jié)課的教學內容對后續(xù)哪些內容的學習有直接影響?
已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項公式。
在某次海軍演習中,已知甲驅逐艦在航母的南偏東15°方向且與航母的距離為12海里,乙護衛(wèi)艦在甲驅逐艦的正西方向,若測得乙護衛(wèi)艦在航母的南偏西45°方向,則甲驅逐艦與乙護衛(wèi)艦的距離為()海里。
案例:某教師在對基本初等函數(shù)進行教學時,給學生出了如下一道練習題:問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學思想方法。
論述實施合作學習應注意的幾個問題。
高中"隨機抽樣"設定的教學目標如下:①通過對具體的案例分析,逐步學會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務:(1)根據教學目標①,設計至少兩個問題,并說明設計意圖;(2)根據教學目標②,給出至少兩個實例,并說明設計意圖;(3)根據教學目標③,設計問題鏈(至少包含兩個問題),并說明設計意圖;(4)相對義務教育階段的統(tǒng)計教學,本節(jié)課的教學重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學內容對后續(xù)哪些內容的學習有直接影響?
案例:閱讀下列兩位教師的教學過程。教師甲的教學過程:師:在一個風雨交加的夜里,從某水庫閘房到防洪指揮部的電話線路發(fā)生了故障。這是一條10km長的線路,如何迅速查出故障所在?如果沿著線路一小段一小段查找,困難很多。每查一個點要爬一次10km長的電線桿子,大約有200多根電線桿子呢。想一想,維修線路的工人師傅怎樣工作最合理?生1:直接一個個電線桿去尋找。生2:先找中點,縮小范圍,再找剩下來一半的中點。師:生2的方法是不是對呢?我們一起來考慮一下。如圖,維修工人首先從中點C查,用隨身帶的話機向兩個端點測試時,發(fā)現(xiàn)AC段正常,斷定故障在BC段,再到BC段中點D,這次發(fā)現(xiàn)BD段正常,可見故障在CD段,再到CD中點E來查。每查一次,可以把待查的線路長度縮減一半,如此查下去,不用幾次,就能把故障點鎖定在一兩根電線桿附近。師:我們可以用一個動態(tài)過程來展示一下(展示多媒體課件)。在一條線段上找某個特定點,可以通過取中點的方法逐步縮小特定點所在的范圍(即二分法思想)。教師乙的教學過程:師:大家都看過李詠主持的《幸運52》吧,今天咱也試一回(出示游戲:看商品、猜價格)。生:積極參與游戲,課堂氣氛活躍。師:競猜中,"高了"、"低了"的含義是什么?如何確定價格的最可能的范圍?生:主持人"高了、低了"的回答是判斷價格所在區(qū)間的依據。師:如何才能更快的猜中商品的預定價格?生:回答各異。老師由此引導學生說出"二分法"的思想,并向同學們引出二分法的概念。問題:(1)分析兩種情景引入的特點。(2)結合案例,說明為什么要學習用二分法求方程的近似解。