填空題解非線性方程f(x)=0的牛頓迭代法具有()收斂。
您可能感興趣的試卷
你可能感興趣的試題
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
給定數(shù)據(jù)表如下;試求三次樣條插值,并滿足條件:。
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
要使求積公式具有2次代數(shù)精確度,則x1=(),A1=()
題型:填空題
f(x)=x7+x4+3x+1,求。
題型:?jiǎn)柎痤}
指明插值求積公式所具有的代數(shù)精確度。
題型:?jiǎn)柎痤}
用改進(jìn)歐拉法和梯形法解初值問(wèn)題y′=x2+x-y,y(0)=0取步長(zhǎng)h=0.1,計(jì)算到x=0.5,并與準(zhǔn)確解y=-e-x+x2-x-1相比較.
題型:?jiǎn)柎痤}
若用梯形公式計(jì)算,步長(zhǎng)h有無(wú)限制.
題型:?jiǎn)柎痤}
證明:△(fkgk)=fk△gk+gk+1△fk。
題型:?jiǎn)柎痤}
求方程的剛性比,用四階R-K方法求解時(shí),最大步長(zhǎng)能取多少?
題型:?jiǎn)柎痤}
求函數(shù)f(x)=ex在指定區(qū)間[0,1]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}