A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE
您可能感興趣的試卷
你可能感興趣的試題
A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM
A.平方歐幾里德距離
B.余弦距離
C.直接相似度
D.共享最近鄰
以下是哪一個(gè)聚類算法的算法流程()。
①構(gòu)造k-最近鄰圖。
②使用多層圖劃分算法劃分圖。
③repeat:合并關(guān)于相對(duì)互連性和相對(duì)接近性而言,最好地保持簇的自相似性的簇。
④until:不再有可以合并的簇。
A.MST
B.OPOSSUM
C.Chameleon
D.Jarvis-Patrick(JP)
A.K均值丟棄被它識(shí)別為噪聲的對(duì)象,而DBSCAN一般聚類所有對(duì)象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會(huì)合并有重疊的簇
A.基于圖的凝聚度
B.基于原型的凝聚度
C.基于原型的分離度
D.基于圖的凝聚度和分離度
最新試題
無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類數(shù)據(jù)的觀察和理解。
完整性,一致性,時(shí)效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個(gè)維度指標(biāo)。
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
由于決策樹學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
管理員不需要驗(yàn)證就可以訪問數(shù)據(jù)存儲(chǔ)系統(tǒng)中的任何數(shù)據(jù),這符合數(shù)據(jù)安全的要求。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問是線性訪問,但是做了索引的數(shù)據(jù)訪問會(huì)成倍的降低訪問時(shí)間。
任何對(duì)數(shù)據(jù)處理與存儲(chǔ)系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。