判斷題由于決策樹學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
您可能感興趣的試卷
最新試題
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
題型:判斷題
使用偏差較小的模型總是比偏差較大的模型更好。
題型:判斷題
假設(shè)屬性的數(shù)量固定,則可以在時(shí)間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
題型:判斷題
最大似然估計(jì)的一個(gè)缺點(diǎn)是,在某些情況下(例如,多項(xiàng)式分布),它可能會(huì)返回零的概率估計(jì)。
題型:判斷題
由于決策樹學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
題型:判斷題
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
題型:判斷題
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
題型:判斷題
無論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
題型:判斷題
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
題型:判斷題
任何對(duì)數(shù)據(jù)處理與存儲(chǔ)系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
題型:判斷題