設(shè)f(x)在[a,b]可導(dǎo),且f'+(a)與f'-(b)不相等,c是夾在f'+(a)與f'-(b)之間的一個(gè)數(shù),求證:存在ξ∈(a,b)使得f'(ξ)=c.
設(shè)f(x)定義在(-∞,+∞)內(nèi),且對(duì)任意的實(shí)數(shù)x1,x2,有(x1-2x2)(f(x1)-f(x2))≥0,則().(A)?對(duì)任意的x,f'(x)≥0?(B)?對(duì)任意的x,f'(x)≤0.(C)?函數(shù)f(-x)單增??(D)?函數(shù)-f(-x)單增