您可能感興趣的試卷
你可能感興趣的試題
下列變量在給定的變化過(guò)程中哪些是無(wú)窮小量,哪些是無(wú)窮大量?
作函數(shù)的圖像,并證明該函數(shù)在x→0時(shí)不存在極限。
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
對(duì)圓的直徑作近似測(cè)量,其值均勻分布在區(qū)間[a,b]上,求圓的面積的數(shù)學(xué)期望。
設(shè)X~U(a,b),求D(X)。
取自某校畢業(yè)生的一個(gè)100人的簡(jiǎn)單隨機(jī)樣本,有48人年收入不少于3萬(wàn)元,估計(jì)該校畢業(yè)生中年收入不少于3萬(wàn)元的所有畢業(yè)生的百分比。
設(shè)X~U[0,λ],X1,X2,…,Xn是取自X的一個(gè)樣本,求的矩法估計(jì)。
某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過(guò)10次的概率。
樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計(jì)算樣本平均值和樣本方差。
甲乙兩人五門(mén)課程的測(cè)驗(yàn)成績(jī)(每門(mén)課程滿(mǎn)分均為100分)為又經(jīng)統(tǒng)計(jì),該年級(jí)五門(mén)課程這次測(cè)驗(yàn)的平均分?jǐn)?shù)分別為70分、85分、65分、75分、68分,標(biāo)準(zhǔn)差分別為9分、6分、11分、8分、10分,試運(yùn)用標(biāo)準(zhǔn)分?jǐn)?shù)來(lái)比較甲乙這次測(cè)驗(yàn)總分的前后順序。
某電視臺(tái)廣告部稱(chēng)某類(lèi)企業(yè)在該臺(tái)黃金時(shí)段播放廣告后平均受益(平均利潤(rùn)增加量)至少為15萬(wàn)元,設(shè)廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機(jī)抽樣20個(gè),平均受益13.2萬(wàn)元,標(biāo)準(zhǔn)差3.4萬(wàn)元。試在α=0.05的水平下判斷該廣告部的說(shuō)法是否正確?
根據(jù)長(zhǎng)期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗(yàn),測(cè)得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問(wèn):能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)
某車(chē)間有200臺(tái)機(jī)床獨(dú)立工作,每臺(tái)機(jī)床在工作時(shí)間內(nèi)有70%的時(shí)間開(kāi)動(dòng),每臺(tái)機(jī)床工作時(shí)需耗電1kw,問(wèn)應(yīng)供應(yīng)多少電力才能有99.9%的把握保證該車(chē)間正常生產(chǎn)。