已知sinx區(qū)間[0.4,0.8]的函數(shù)表 如用二次插值求sin0.63891的近似值,如何選擇節(jié)點(diǎn)才能使誤差最???并求該近似值。
已知 分別用拉格朗日插值法和牛頓插值法求f(x)的三次插值多項(xiàng)式P3(x),并求f(2)的近似值(保留四位小數(shù))。
最新試題
證明:‖f-g‖≥‖f‖-‖g‖。
要使求積公式具有2次代數(shù)精確度,則x1=(),A1=()
分別用二階顯式阿當(dāng)姆斯方法和二階隱式阿當(dāng)姆斯方法解下列初值問題:y′=1-y,y(0)=0.取h=0.2,y0=0,y1=0.181,計(jì)算y(1.0)并與準(zhǔn)確解y=1-e-x相比較.
求函數(shù)f(x)=1/x在指定區(qū)間[1,3]上對于Φ=span{1,x}的最佳逼近多項(xiàng)式。
給定數(shù)據(jù)表如下;試求三次樣條插值,并滿足條件:。