您可能感興趣的試卷
你可能感興趣的試題
A.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧n0有:0≦f(n)≦cg(n)}
B.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧0有:0≦g(n)≦(n)}
C.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦f(n)<cg(n)}
D.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦cg(n)<f(n)}
A.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧n0有:0≦f(n)≦cg(n)}
B.O(g(n))={f(n)∣存在正常數(shù)c和n0使得對所有n≧0有:0≦g(n)≦(n)}
C.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦f(n)<cg(n)}
D.O(g(n))={f(n)∣對于任何正常數(shù)c>0,存在正數(shù)和n0>0使得對所有n≧n0有:0≦cg(n)<f(n)}
A.NP={L∣L是一個(gè)能在非多項(xiàng)式時(shí)間內(nèi)被一臺NDTM所接受的語言}
B.NP={L∣L是一個(gè)能在非多項(xiàng)式時(shí)間內(nèi)被一臺DTM所接受的語言}
C.NP={L∣L是一個(gè)能在多項(xiàng)式時(shí)間內(nèi)被一臺DTM所接受的語言}
D.NP={L∣L是一個(gè)能在多項(xiàng)式時(shí)間內(nèi)被一臺NDTM所接受的語言}
A.k帶圖靈機(jī)處理所有長度為n的輸入時(shí),在某條帶上所使用過的最大方格數(shù)
B.k帶圖靈機(jī)處理所有長度為n的輸入時(shí),在k條帶上所使用過的方格數(shù)的總和
C.k帶圖靈機(jī)處理所有長度為n的輸入時(shí),在k條帶上所使用過的平均方格數(shù)
D.k帶圖靈機(jī)處理所有長度為n的輸入時(shí),在某條帶上所使用過的最小方格數(shù)
最新試題
算法的復(fù)雜性是()的度量,是評價(jià)算法優(yōu)劣的重要依據(jù)。
若n=4,在機(jī)器M1和M2上加工作業(yè)i所需的時(shí)間分別為ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4個(gè)作業(yè)的最優(yōu)調(diào)度方案,并計(jì)算最優(yōu)值。
簡單描述分治法的基本思想。
寫出最優(yōu)二叉搜索樹問題的動(dòng)態(tài)規(guī)劃算法(設(shè)函數(shù)名binarysearchtree))。
動(dòng)態(tài)規(guī)劃算法的兩個(gè)基本要素是()和()。
一個(gè)算法就是一個(gè)有窮規(guī)則的集合,其中之規(guī)則規(guī)定了解決某一特殊類型問題的一系列運(yùn)算,此外,算法還應(yīng)具有以下五個(gè)重要特性:()、()、()、()、()。
已知非齊次遞歸方程:其中,b、c是常數(shù),g(n)是n的某一個(gè)函數(shù)。則f(n)的非遞歸表達(dá)式為:現(xiàn)有Hanoi塔問題的遞歸方程為:,求h(n)的非遞歸表達(dá)式。
設(shè)S={X1,X2,···,Xn}是嚴(yán)格遞增的有序集,利用二叉樹的結(jié)點(diǎn)來存儲S中的元素,在表示S的二叉搜索樹中搜索一個(gè)元素X,返回的結(jié)果有兩種情形:(1)在二叉搜索樹的內(nèi)結(jié)點(diǎn)中找到X=Xi,其概率為bi。(2)在二叉搜索樹的葉結(jié)點(diǎn)中確定X∈(Xi,Xi+1),其概率為ai。在表示S的二叉搜索樹T中,設(shè)存儲元素Xi的結(jié)點(diǎn)深度為Ci;葉結(jié)點(diǎn)(Xi,Xi+1)的結(jié)點(diǎn)深度為di,則二叉搜索樹T的平均路長p為多少?假設(shè)二叉搜索樹T[i][j]={Xi,Xi+1,···,Xj}最優(yōu)值為m[i][j],W[i][j]= ai-1+bi+···+bj+aj,則m[i][j](1<=i<=j<=n)遞歸關(guān)系表達(dá)式為什么?
二分搜索算法是利用()實(shí)現(xiàn)的算法。
流水作業(yè)調(diào)度中,已知有n個(gè)作業(yè),機(jī)器M1和M2上加工作業(yè)i所需的時(shí)間分別為ai和bi,請寫出流水作業(yè)調(diào)度問題的johnson法則中對ai和bi的排序算法。(函數(shù)名可寫為sort(s,n))