單項(xiàng)選擇題關(guān)于混合模型聚類(lèi)算法的優(yōu)缺點(diǎn),下面說(shuō)法正確的是()。

A.當(dāng)簇只包含少量數(shù)據(jù)點(diǎn),或者數(shù)據(jù)點(diǎn)近似協(xié)線(xiàn)性時(shí),混合模型也能很好地處理
B.混合模型比K均值或模糊c均值更一般,因?yàn)樗梢允褂酶鞣N類(lèi)型的分布
C.混合模型很難發(fā)現(xiàn)不同大小和橢球形狀的簇
D.混合模型在有噪聲和離群點(diǎn)時(shí)不會(huì)存在問(wèn)題


您可能感興趣的試卷

你可能感興趣的試題

1.單項(xiàng)選擇題以下哪個(gè)聚類(lèi)算法不是屬于基于原型的聚類(lèi)()。

A.模糊c均值
B.EM算法
C.SOM
D.CLIQUE

2.單項(xiàng)選擇題以下屬于可伸縮聚類(lèi)算法的是()。

A.CURE
B.DENCLUE
C.CLIQUE
D.OPOSSUM

5.單項(xiàng)選擇題關(guān)于K均值和DBSCAN的比較,以下說(shuō)法不正確的是()。

A.K均值丟棄被它識(shí)別為噪聲的對(duì)象,而DBSCAN一般聚類(lèi)所有對(duì)象
B.K均值使用簇的基于原型的概念,而DBSCAN使用基于密度的概念
C.K均值很難處理非球形的簇和不同大小的簇,DBSCAN可以處理不同大小和不同形狀的簇
D.K均值可以發(fā)現(xiàn)不是明顯分離的簇,即便簇有重疊也可以發(fā)現(xiàn),但是DBSCAN會(huì)合并有重疊的簇

最新試題

由于決策樹(shù)學(xué)會(huì)了對(duì)離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類(lèi),因此它們不可能過(guò)度擬合。

題型:判斷題

數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。

題型:判斷題

經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。

題型:判斷題

訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。

題型:判斷題

使用正則表達(dá)式可以找到一個(gè)文本文件中所有可能出現(xiàn)的手機(jī)號(hào)碼。

題型:判斷題

支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。

題型:判斷題

對(duì)于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對(duì)于這類(lèi)數(shù)據(jù)的觀察和理解。

題型:判斷題

數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。

題型:判斷題

給定用于2類(lèi)分類(lèi)問(wèn)題的線(xiàn)性可分離數(shù)據(jù)集,線(xiàn)性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類(lèi)精度。

題型:判斷題

由于分類(lèi)是回歸的一種特殊情況,因此邏輯回歸是線(xiàn)性回歸的一種特殊情況。

題型:判斷題