已知某消費(fèi)者的效用函數(shù)為U=X1X2,兩商品的價(jià)格分別為P1=4,P2=2,消費(fèi)者的收入是M=80?,F(xiàn)在假定商品1的價(jià)格下降為P1=2。
求:
(1)由商品1的價(jià)格P1下降所導(dǎo)致的總效應(yīng),使得該消費(fèi)者對(duì)商品1的購(gòu)買量發(fā)生多少變化?
(2)由商品1的價(jià)格P1下降所導(dǎo)致的替代效應(yīng),使得該消費(fèi)者對(duì)商品1的購(gòu)買量發(fā)生多少變化?
(3)由商品1的價(jià)格P1下降所導(dǎo)致的收入效應(yīng),使得該消費(fèi)者對(duì)商品1的購(gòu)買量發(fā)生多少變化?
設(shè)某消費(fèi)者的效用函數(shù)為柯布道格拉斯類型的,即U=xαyβ,商品x和商品y的價(jià)格分別為Px和Py,消費(fèi)者的收入為M,α和β為常數(shù),且α+β=1。
(1)求該消費(fèi)者關(guān)于商品x和商品y的需求函數(shù)。
(2)證明當(dāng)商品x和y的價(jià)格以及消費(fèi)者的收入同時(shí)變動(dòng)一個(gè)比例時(shí),消費(fèi)者對(duì)兩商品的需求關(guān)系維持不變。
(3)證明消費(fèi)者效用函數(shù)中的參數(shù)α和β分別為商品x和商品y的消費(fèi)支出占消費(fèi)者收入的份額。