在向量空間P4,取,證明:a1,a2,a3,a4可作為P4的一組基,且在P4中求一個(gè)非零向量a,使它在基a1,a2,a3,a4下的坐標(biāo)與在常用基下的坐標(biāo)相同。
用正交變換化二次型為標(biāo)準(zhǔn)型,并寫出正交變換矩陣。