問答題
在向量空間P4,取,證明:a1,a2,a3,a4可作為P4的一組基,且在P4中求一個(gè)非零向量a,使它在基a1,a2,a3,a4下的坐標(biāo)與在常用基下的坐標(biāo)相同。
您可能感興趣的試卷
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
關(guān)于初等矩陣下列結(jié)論成立的是()
題型:?jiǎn)雾?xiàng)選擇題
二次型f(x1,x2,x3)=x12+x22+x32+2x1x2+2x1x3+2x2x3的秩為()。
題型:?jiǎn)雾?xiàng)選擇題
設(shè)矩陣B滿足方程B=,求矩陣B。
題型:?jiǎn)柎痤}
相似的兩個(gè)矩陣一定相等。()
題型:判斷題
已知方陣A,且滿足方程A2-A-2I=0,則A的逆矩陣A-1=()。
題型:填空題
設(shè)A=,B=,C=,則(A+B)C=()
題型:填空題
設(shè)A=則A=()
題型:?jiǎn)雾?xiàng)選擇題
若n階方陣A是正交陣,則下列結(jié)論錯(cuò)誤的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)α1,α2,…,αs∈Rn,該向量組的秩為r,則對(duì)于s和r,當(dāng)()時(shí)向量組線性無(wú)關(guān);當(dāng)()時(shí)向量組線性相關(guān)。
題型:填空題
若A為n階可逆矩陣,則R(A)=()。
題型:填空題