在三角形ABC中,∠BAC=90°,AB=AC,若點D在線段BC上,以AD為邊長作正方形ADEF,如圖1,易證∠AFC=∠ACB+∠DAC。
(1)若點D在BC延長線上,其他條件不變,寫出∠AFC,∠ACB,∠DAC的關系,并結合圖2給出證明。
(2)若點D在CB延長線上,其他條件不變,直接寫出∠AFC,∠ACB,∠DAC的關系式。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
設二次函數f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當x∈(0,x1)時,證明x;(2)設函數f(x)的圖象關于直線x=x0對稱,證明。
案例:某教師在對根與系數關系綜合運用教學時,給學生出了如下一道練習題:設α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學生的解答過程如下:利用一元二次方程根與系數的關系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數學思想方法。
高中"集合與函數概念實習作業(yè)"設定的教學目標如下:①了解函數概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;②體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;③在合作形式的小組學習活動中培養(yǎng)學生的領導意識、社會實踐技能和民主價值觀。完成下列任務:(1)根據教學目標,設計一個合理的課堂準備;(2)確定本節(jié)課的教學重點和難點;(3)給出本節(jié)課的教學過程。
已知a=1,b=2。(1)若a∥b,求a·b;(2)若a、b的夾角為60°,求a+b;(3)若a-b與a垂直,求當k為何值時,(ka-b)⊥(a+2b)。
請以"三角函數的積化和差與和差化積"為課題,完成下列教學設計。(1)教學目標;(2)教學重點、難點;(3)教學過程(只要求寫出新課導入和新知探究、鞏固、應用等)及設計意圖。
,(1)求An;(2)求(A+2E)n。
在高中數學課程中為什么要講微積分初步?
高中"方程的根與函數的零點"(第一節(jié)課)設定的教學目標如下:①通過對二次函數圖象的描繪,了解函數零點的概念,滲透由具體到抽象思想,領會函數零點與相應方程實數根之間的關系,②理解提出零點概念的作用,溝通函數與方程的關系。③通過對現(xiàn)實問題的分析,體會用函數系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關系。掌握函數零點存在性的判斷。完成下列任務:(1)根據教學目標,設計一個問題引入,并說明設計意圖;(2)根據教學目標①,設計問題鏈(至少包含三個問題),并說明設計意圖;(3)根據教學目標③,給出至少一個實例和三個問題,并說明設計意圖;(4)確定本節(jié)課的教學重點;(5)作為高中階段的基礎內容,其難點是什么?(6)本節(jié)課的教學內容對后續(xù)哪些內容的學習有直接影響?
已知數列{an}中,a1=1,且(1)求證:數列是等差數列;(2)求數列{an}的通項公式。
已知等差數列{an}滿足:a3=7,a5+a7=26。{an}的前n項和為S。(1)求an及Sn;(2)令.求數列{bn}的前n項和Tn。