已知定點P(6,4)與定直線l1:y=4x,過P點的直線l與l1交于第一象限Q點,與x軸正半軸交于點M,求使△OQM面積最小的直線l方程。
已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1。 (1)求橢圓C的標準方程; (2)若直線Z:y=kx+m與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證:直線l過定點,并求出該定點的坐標。
已知△ABC中,A(2,-1),B(4,3),C(3,-2),求: (1)BC邊上的高所在直線方程; (2)AB邊中垂線方程; (3)∠A平分線所在直線方程。