問答題
給定函數(shù)f(x),設(shè)對(duì)一切x,f′(x)存在,而且,證明對(duì)
的任意常數(shù)λ,迭代法xk+1=xk-λf(xk)均收斂于方程f(x)=0的根。
您可能感興趣的試卷

最新試題
求函數(shù)f(x)=cosxπ在指定區(qū)間[0,1]上對(duì)于Φ=span{1,x}的最佳逼近多項(xiàng)式。
題型:?jiǎn)柎痤}
分別用二階顯式阿當(dāng)姆斯方法和二階隱式阿當(dāng)姆斯方法解下列初值問題:y′=1-y,y(0)=0.取h=0.2,y0=0,y1=0.181,計(jì)算y(1.0)并與準(zhǔn)確解y=1-e-x相比較.
題型:?jiǎn)柎痤}
給定如下方程組:判定Jacobi和Gauss-Seidel方法的收斂性。
題型:?jiǎn)柎痤}
試證明線性二步法當(dāng)b≠-1時(shí)方法為二階,當(dāng)b=-1時(shí)方法為三階.
題型:?jiǎn)柎痤}
用歐拉法解初值問題y′=x2+100y2,y(0)=0.取步長(zhǎng)h=0.1,計(jì)算到x=0.3(保留到小數(shù)點(diǎn)后4位).
題型:?jiǎn)柎痤}