Lions俱樂部正在計劃在當(dāng)?shù)亻蠙烨虮荣悤r出售pretzels,已經(jīng)編制了如下所示的銷售需求:銷售需求8,00010,00012,00015,000概率10%40%30%20%Pretzels的成本隨購買數(shù)量改變,如下所示:購買數(shù)量8,00010,00012,00015,000單位成本1.25美元1.20美元1.15美元1.10美元未銷售的pretzels會捐給當(dāng)?shù)氐氖澄镏行?。在不同的銷售需求水平下計算的利潤和購買數(shù)量如下所示你會向Lions俱樂部建議下列哪項購買數(shù)量?
A.8,000
B.12,000
C.10,000
D.15,000
正確答案:B
Lions俱樂部將采購能使期望利潤最大化的數(shù)量。每種采購的期望利潤等于每個預(yù)計的利潤水平乘以相應(yīng)的概率,然后進行加總。
采購8,000個的期望價值=($6,000)(0.1)+($6,000)(0.4)+($6,000)(0.3)+($6,000)(0.2)=$6,000
采購10,000個的期望價值=($4,000)(0.1)+($8,000)(0.4)+($8,000)(0.3)+($8,000)(0.2)=$7,600
采購12,000個的期望價值=($2,200)(0.1)+($6,200)(0.4)+($10,200)(0.3)+($10,200)(0.2)=$7,800
采購15,000個的期望機制=(.$500)(0.1)+($3,500)(0.4)+($7,500)(0.3)+($13,500)(0.2)=$6,300。采購12,000個有最高的期望利潤
B.12,000
C.10,000
D.15,000
正確答案:B
Lions俱樂部將采購能使期望利潤最大化的數(shù)量。每種采購的期望利潤等于每個預(yù)計的利潤水平乘以相應(yīng)的概率,然后進行加總。
采購8,000個的期望價值=($6,000)(0.1)+($6,000)(0.4)+($6,000)(0.3)+($6,000)(0.2)=$6,000
采購10,000個的期望價值=($4,000)(0.1)+($8,000)(0.4)+($8,000)(0.3)+($8,000)(0.2)=$7,600
采購12,000個的期望價值=($2,200)(0.1)+($6,200)(0.4)+($10,200)(0.3)+($10,200)(0.2)=$7,800
采購15,000個的期望機制=(.$500)(0.1)+($3,500)(0.4)+($7,500)(0.3)+($13,500)(0.2)=$6,300。采購12,000個有最高的期望利潤