判斷題聚類(clustering)是這樣的過程:它找出描述并區(qū)分?jǐn)?shù)據(jù)類或概念的模型(或函數(shù)),以便能夠使用模型預(yù)測類標(biāo)記未知的對象類。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
對于文本數(shù)據(jù)和多媒體數(shù)據(jù)進(jìn)行特征提取是為了方便對于這類數(shù)據(jù)的觀察和理解。
題型:判斷題
要將工作申請分為兩類,并使用密度估計來檢測離職申請人,我們可以使用生成分類器。
題型:判斷題
由于決策樹學(xué)會了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
題型:判斷題
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
題型:判斷題
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時,MAP估計等于ML估計。
題型:判斷題
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
題型:判斷題
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
題型:判斷題
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
題型:判斷題
假設(shè)屬性的數(shù)量固定,則可以在時間上以線性方式學(xué)習(xí)基于高斯的貝葉斯最優(yōu)分類器,而該數(shù)量是數(shù)據(jù)集中記錄的數(shù)量。
題型:判斷題
無論質(zhì)心的初始化如何,K-Means始終會給出相同的結(jié)果。
題型:判斷題