A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
您可能感興趣的試卷
你可能感興趣的試題
A.分類和聚類都是有指導(dǎo)的學(xué)習(xí)
B.分類和聚類都是無指導(dǎo)的學(xué)習(xí)
C.分類是有指導(dǎo)的學(xué)習(xí),聚類是無指導(dǎo)的學(xué)習(xí)
D.分類是無指導(dǎo)的學(xué)習(xí),聚類是有指導(dǎo)的學(xué)習(xí)
A.判定樹歸納
B.貝葉斯分類
C.后向傳播分類
D.基于案例的推理
A.OLTP系統(tǒng)主要用于管理當(dāng)前數(shù)據(jù),而OLAP系統(tǒng)主要存放的是歷史數(shù)據(jù)
B.在數(shù)據(jù)的存取上,OLTP系統(tǒng)比OLAP系統(tǒng)有著更多的寫操作
C.對OLTP系統(tǒng)上的數(shù)據(jù)訪問量往往比對OLAP系統(tǒng)的數(shù)據(jù)訪問量要大得多
D.OLAP系統(tǒng)中往往存放的是匯總的數(shù)據(jù),而OLTP系統(tǒng)中往往存放詳細的數(shù)據(jù)
A.企業(yè)倉庫
B.數(shù)據(jù)集市
C.虛擬倉庫
D.信息倉庫
A.數(shù)據(jù)源
B.數(shù)據(jù)倉庫服務(wù)器
C.OLAP服務(wù)器
D.前端工具
最新試題
使決策樹更深將確保更好的擬合度,但會降低魯棒性。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
完整性,一致性,時效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標(biāo)。
通過統(tǒng)計學(xué)可以推測擲兩個撒子同時選中3點的幾率。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
數(shù)據(jù)存儲體系中并不牽扯計算機網(wǎng)絡(luò)這一環(huán)節(jié)。
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
由于決策樹學(xué)會了對離散值輸出而不是實值函數(shù)進行分類,因此它們不可能過度擬合。
任務(wù)調(diào)度系統(tǒng)的設(shè)計與實現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。