A.分布的
B.代數(shù)的
C.整體的
D.混合的
您可能感興趣的試卷
你可能感興趣的試題
A.空缺值
B.噪聲數(shù)據(jù)
C.不一致數(shù)據(jù)
D.敏感數(shù)據(jù)
A.數(shù)據(jù)壓縮
B.數(shù)據(jù)概化
C.維歸約
D.規(guī)范化
A.設(shè)備異常
B.命名規(guī)則的不一致
C.與其他已有數(shù)據(jù)不一致而被刪除
D.在輸入時(shí),有些數(shù)據(jù)因?yàn)榈貌坏街匾暥鴽](méi)有被輸入
A.數(shù)據(jù)中的空缺值
B.噪聲數(shù)據(jù)
C.數(shù)據(jù)中的不一致性
D.數(shù)據(jù)中的概念分層
A.平滑
B.聚集
C.數(shù)據(jù)概化
D.規(guī)范化
最新試題
要將工作申請(qǐng)分為兩類,并使用密度估計(jì)來(lái)檢測(cè)離職申請(qǐng)人,我們可以使用生成分類器。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。
使用偏差較小的模型總是比偏差較大的模型更好。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個(gè)值,并選擇最小化失真度量的值。
無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個(gè)信箱。
數(shù)據(jù)收集中的拉模式需要通過(guò)定時(shí)的方式不斷地觸發(fā),才能源源不斷地獲取對(duì)應(yīng)的數(shù)據(jù)。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來(lái)完成。
根據(jù)數(shù)據(jù)科學(xué)家與數(shù)據(jù)工程師對(duì)于問(wèn)題的理解并相互討論,然后確定需要收集數(shù)據(jù)的范圍以及種類,然后數(shù)據(jù)工程師使用數(shù)據(jù)收集工具,架構(gòu),甚至編程的形式來(lái)進(jìn)行數(shù)據(jù)收集的工作,然后并把數(shù)據(jù)收集的數(shù)據(jù)放置到對(duì)應(yīng)的存儲(chǔ)系統(tǒng)。
給定用于2類分類問(wèn)題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。