A.冗余屬性不會對決策樹的準(zhǔn)確率造成不利的影響
B.子樹可能在決策樹中重復(fù)多次
C.決策樹算法對于噪聲的干擾非常敏感
D.尋找最佳決策樹是NP完全問題
您可能感興趣的試卷
你可能感興趣的試題
A.KNN
B.SVM
C.Bayes
D.神經(jīng)網(wǎng)絡(luò)
A.DBSCAN
B.C4.5
C.K-Mean
D.EM
A.與同一時期其他數(shù)據(jù)對比
B.可視化
C.基于模板的方法
D.主觀興趣度量
A.系數(shù)
B.幾率
C.Cohen度量
D.興趣因子
A.頻繁子集挖掘
B.頻繁子圖挖掘
C.頻繁數(shù)據(jù)項(xiàng)挖掘
D.頻繁模式挖掘
最新試題
任何對數(shù)據(jù)處理與存儲系統(tǒng)的操作均需要記錄,這符合數(shù)據(jù)安全的要求。
使用偏差較小的模型總是比偏差較大的模型更好。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫來存儲。
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
使用正則表達(dá)式可以找到一個文本文件中所有可能出現(xiàn)的手機(jī)號碼。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過度擬合訓(xùn)練數(shù)據(jù)的潛在問題。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
小數(shù)據(jù)集的數(shù)據(jù)處理最好也由計(jì)算機(jī)手段來完成。
要將工作申請分為兩類,并使用密度估計(jì)來檢測離職申請人,我們可以使用生成分類器。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。