問(wèn)答題
設(shè)A=,已知A有3個(gè)線(xiàn)性無(wú)關(guān)的特征向量,λ=2為A的二重特征值,求可逆矩陣P,使得P-1AP為對(duì)角行矩陣.
您可能感興趣的試卷
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
若n階方陣A是正交陣,則下列結(jié)論錯(cuò)誤的是()
題型:?jiǎn)雾?xiàng)選擇題
下列關(guān)于可逆矩陣的性質(zhì),不正確的是()。
題型:?jiǎn)雾?xiàng)選擇題
相似的兩個(gè)矩陣一定相等。()
題型:判斷題
試問(wèn)a為何值時(shí),向量組α=(1,0,-1,2),β=(0,2,a,3),γ=(-1,a,a+1,a-2)線(xiàn)性相關(guān)。
題型:?jiǎn)柎痤}
二次型f(x1,x2,x3)=x12-2x22-2x32-4x1x2+4x1x3+8x2x3的秩為()
題型:?jiǎn)雾?xiàng)選擇題
關(guān)于初等矩陣下列結(jié)論成立的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A為四階方陣,且滿(mǎn)足秩r(A)+秩r(A·E)=4,則A2=()。
題型:填空題
設(shè)A為3階矩陣,丨A丨=1/2,求丨A*丨=()
題型:?jiǎn)雾?xiàng)選擇題
已知方陣A,且滿(mǎn)足方程A2-A-2I=0,則A的逆矩陣A-1=()。
題型:填空題
已知向量組α1=(1,1,1),α2=(2,2,2),α3=(3,3,3),α4=(0,0,1),α5=(1,2,3)。(1)求該向量組的秩;(2)求該向量組的一個(gè)極大線(xiàn)性無(wú)關(guān)組。
題型:?jiǎn)柎痤}