最新試題

某中學(xué)的初一年級(jí)有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來(lái)描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測(cè)試,求各組的人數(shù)。

題型:?jiǎn)柎痤}

求矩陣的逆矩陣。

題型:?jiǎn)柎痤}

設(shè)X1,X2,…,Xn是總體X的一個(gè)樣本,試證和都是總體均值的無(wú)偏估計(jì),并判斷哪一個(gè)比較有效。

題型:?jiǎn)柎痤}

為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問(wèn)至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?

題型:?jiǎn)柎痤}

樣本值:54,67,68,78,70,66,67,70,65,69,分別計(jì)算樣本平均值和樣本方差。

題型:?jiǎn)柎痤}

設(shè)隨機(jī)變量的概率密度為,求E(X)和D(X)。

題型:?jiǎn)柎痤}

甲乙兩人五門課程的測(cè)驗(yàn)成績(jī)(每門課程滿分均為100分)為又經(jīng)統(tǒng)計(jì),該年級(jí)五門課程這次測(cè)驗(yàn)的平均分?jǐn)?shù)分別為70分、85分、65分、75分、68分,標(biāo)準(zhǔn)差分別為9分、6分、11分、8分、10分,試運(yùn)用標(biāo)準(zhǔn)分?jǐn)?shù)來(lái)比較甲乙這次測(cè)驗(yàn)總分的前后順序。

題型:?jiǎn)柎痤}

設(shè)隨機(jī)變量X服從參數(shù)λ=1的指數(shù)分布,求E(3X-2)和D(3X-2)。

題型:?jiǎn)柎痤}

若按總分從高到低錄取,試分析一總分為237分的考生被錄取為正式工的可能性。

題型:?jiǎn)柎痤}

某車間有200臺(tái)機(jī)床獨(dú)立工作,每臺(tái)機(jī)床在工作時(shí)間內(nèi)有70%的時(shí)間開(kāi)動(dòng),每臺(tái)機(jī)床工作時(shí)需耗電1kw,問(wèn)應(yīng)供應(yīng)多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。

題型:?jiǎn)柎痤}