A、B兩物塊置于光滑水平面上,并用彈簧相連,如圖所示。當(dāng)壓縮彈簧后無初速地釋放,釋放后系統(tǒng)的動能和動量分別用T、P表示,則有:()
A.T≠0,P=0
B.T=0,P≠0
C.T=0,P=0
D.T≠0,P≠0
您可能感興趣的試卷
你可能感興趣的試題
圖示曲柄連桿機構(gòu)中,OA=r,AB=2r,OA、AB及滑塊B質(zhì)量均為m,曲柄以ω的角速度繞O軸轉(zhuǎn)動,則此時系統(tǒng)的動能為:()
A.(7/6)mr2ω2
B.(3/2)mr2ω2
C.(10/6)mr2ω2
D.(9/8)mr2ω2
圖示一剛性系數(shù)為k的彈簧下掛一質(zhì)量為m的物塊,當(dāng)物塊處于平衡時彈簧的靜伸長為δ,則當(dāng)物塊從靜平衡位置下降距離h時,彈性力所做的功W為:()
A.W=(1/2)k[(h+δ)2-δ2]
B.W=(1/2)k[δ2-(h+δ)2]
C.W=(1/2)k(δ+h)2
D.W=(1/2)kh2
圖示一端固結(jié)于O點的彈簧,另一端可自由運動,彈簧的原長L0=2b/3,彈簧的彈性系數(shù)為k。若以B點處為零勢能面,則A處的彈性勢能為:()
A.kb2/24
B.5kb2/18
C.3kb2/8
D.-3kb2/8
在一重力為W的車輪的輪軸上繞有軟繩,繩的一端作用一水平力P(見圖)。已知車輪的半徑為R,輪軸的半徑為r,車輪及輪軸以中心O的回轉(zhuǎn)半徑為ρ,以及車輪與地面間的滑動摩擦系數(shù)為f,繩重和滾阻皆不計。當(dāng)車輪沿地面作平動時,力P的值為:()
A.P=fWR/ρ
B.P=fWR/r
C.P=fWR/r
D.P=Fw
圖示鼓輪半徑r=3.65m,對轉(zhuǎn)軸O的轉(zhuǎn)動慣量J0=0.92kg·m2;繞在鼓輪上的繩端掛有質(zhì)量m=30kg的物體A。不計系統(tǒng)質(zhì)量與摩擦,欲使鼓輪以角加速度a=37.8rad/s2轉(zhuǎn)動來提升重物,需對鼓輪作用的轉(zhuǎn)矩M的大小是:()
A.37.8N·m
B.47N·m
C.36.3N·m
D.45.5N·m
![](https://static.ppkao.com/ppmg/img/appqrcode.png)
最新試題
一物體作瞬時平動,此瞬時該剛體上各點()。
圖示結(jié)構(gòu)是()。
已知:如圖所示均質(zhì)圓環(huán)半徑為r,質(zhì)量為m,其上焊接剛桿OA,桿長為r,質(zhì)量也為m。用手扶住圓環(huán)使其在OA水平位置靜止。設(shè)圓環(huán)與地面間為純滾動。求:放手瞬時,圓環(huán)的角加速度,地面的摩擦力及法向約束力。
力對物體的作用效應(yīng)一般分為內(nèi)效應(yīng)和外效應(yīng)。
如圖所示結(jié)構(gòu),a, M=Fa, F1═F2═F3, 求:A,D處約束力.
在如圖所示結(jié)構(gòu)中,各構(gòu)件重量不計,桿AB上作用有力F,則()。
兩個均質(zhì)桿AB和BC分別重P1和P2,其端點A和C用球鉸固定在水平面,另一端B由球鉸鏈相連接,靠在光滑的鉛直墻上,墻面與AC平行,如圖所示。如AB與水平線的交角為45º,∠BAC=90º,求A和C的支座約束力以及墻上點B所受的壓力。
如圖所示,物體處于平衡,自重不計,接觸處是光滑的,圖中所畫受力圖是()。
(動量矩定理)均質(zhì)圓柱體A和B的質(zhì)量均為m,半徑均為r,一細繩纏在繞固定軸O轉(zhuǎn)動的圓柱A上,繩的另一端繞在圓柱B上,直線繩段鉛垂,如圖所示。不計摩擦。求:(1)圓柱體B下落時質(zhì)心的加速度;(2)若在圓柱體A上作用一逆時針轉(zhuǎn)向力偶矩M,試問在什么條件下圓柱體B的質(zhì)心加速度將向上。
如圖所示的平面桁架,A端采用鉸鏈約束,B端采用滾動支座約束,各桿件長度為1m。在節(jié)點E和G上分別作用載荷FE=10kN,F(xiàn)G=7kN。試計算桿1、2和3的內(nèi)力。