微分方程y″-5y′+6y=xe2x的特解形式是:()
A.Ae2x+(Bx+C. B.(Ax+B.e2x C.x2(Ax+B.e2x D.x(Ax+B.e2x
已知r1=3,r2=-3是方程y″+py′+q=0(p和q是常數(shù))的特征方程的兩個(gè)根,則該微分方程是下列中哪個(gè)方程()?
A.y″+9y′=0 B.y″-9y′=0 C.y″+9y=0 D.y″-9y=0
設(shè)f1(x)和f2(x)為二階常系數(shù)線性齊次微分方程y″+py′+g=0的兩個(gè)特解,若由f1(x)和f2(x)能構(gòu)成該方程的通解,下列哪個(gè)方程是其充分條件()?
A.f1(x)·f′2(x)-f2(x)f′1(x)=0 B.f1(x)·f′2(x)-f2(x)·f′1(x)≠0 C.f1(x)f′2(x)+f2(x)·f′1(x)=0 D.f1(x)f′2(x)+f2(x)f′1(x)≠0